Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Microbiol Res ; 283: 127666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460283

RESUMO

The escalating prevalence of multidrug-resistant (MDR) bacteria pose a significant public health threat. Understanding the genomic features and deciphering the antibiotic resistance profiles of these pathogens is crucial for development of effective surveillance and treatment strategies. In this study, we employed the R10.4.1 nanopore sequencing technology, specifically through the use of the MinION platform, to analyze eight MDR bacterial strains originating from clinical, ecological and food sources. A single 72-hour sequencing run could yield approximately 12 million reads which covered a total of 34 gigabases (Gbp). The nanopore R10.4.1 data was processed using the Flye assembler, successfully assembling the genomes of eight bacterial strains and their 18 plasmids. Notably, the assemblies generated solely from R10.4.1 nanopore data closely matched those from next-generation sequencing data. Diverse antibiotic resistance patterns and specific resistance genes in the test strains were identified. Hospital strains that exhibited multidrug resistance were found to harbor various resistance genes that encode efflux pumps and extended-spectrum ß-lactamases. Environmental and food sources were found to display resistance profiles in a species-specific manner. The composition of structurally complex plasmids in the test strains could also be revealed by analysis of nanopore long reads, which also suggested evidence of horizontal transfer of plasmids between different bacterial species. These findings provide valuable insights into the genetic characteristics of MDR bacteria and demonstrating the practicality of nanopore sequencing technology for detecting of resistance elements in bacterial pathogens.


Assuntos
Sequenciamento por Nanoporos , Plasmídeos/genética , Genômica , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Bactérias/genética , Antibacterianos/farmacologia
2.
Sci Total Environ ; 926: 171924, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522537

RESUMO

This study employs a comprehensive approach combining metagenomic analysis and bacterial isolation to elucidate the microbial composition, antibiotic resistance genes (ARGs), and virulence factors (VFGs) present in shrimps from market and supermarket. Metagenomic analysis of shrimps revealed a dominance of Proteobacteria and Bacteroidetes with Firmicutes notably enriched in some samples. On the other hand, the dominant bacteria isolated included Citrobacter portucalensis, Escherichia coli, Salmonella enterica, Vibrio species and Klebsiella pneumonaie. Metagenomic analysis unveiled a diverse spectrum of 23 main types and 380 subtypes of ARGs in shrimp samples including many clinical significant ARGs such as blaKPC, blaNDM, mcr, tet(X4) etc. Genomic analysis of isolated bacterial strains identified 14 ARG types with 109 subtype genes, which complemented the metagenomic data. Genomic analysis also allowed us to identify a rich amount of MDR plasmids, which provided further insights into the dissemination of resistance genes in different species of bacteria in the same samples. Examination of VFGs and mobile genetic elements (MGEs) in both metagenomic and bacterial genomes revealed a complex landscape of factors contributing to bacterial virulence and genetic mobility. Potential co-occurrence patterns of ARGs and VFGs within human pathogenic bacteria underlined the intricate interplay between antibiotic resistance and virulence. In conclusion, this integrated analysis for the first time provides a comprehensive view and sheds new light on the potential hazards associated with shrimp products in the markets. The findings underscore the necessity of ongoing surveillance and intervention strategies to mitigate risks posed by antibiotic-resistant bacteria in the food supply chain using the novel comprehensive approaches.


Assuntos
Decápodes , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , Bactérias/genética , Plasmídeos , Resistência Microbiana a Medicamentos/genética , Crustáceos
3.
Microbiol Res ; 282: 127672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447456

RESUMO

Antibiotic resistance is a global health issue, with Klebsiella pneumoniae (KP) posing a particular threat due to its ability to acquire resistance to multiple drug classes rapidly. OXA-232 is a carbapenemase that confers resistance to carbapenems, a class of antibiotics often used as a last resort for treating severe bacterial infections. The study reports the earliest known identification of six OXA-232-producing KP strains that were isolated in Zhejiang, China, in 2008 and 2009 within a hospital, two years prior to the first reported identification of OXA-232 in France. The four KP strains carry the OXA-232 gene and exhibit hypervirulent loci, suggesting a broader temporal and geographical spread and integration of this resistance and virulence than previously recognized with implications for public health. Global analysis of all OXA-232-bearing KP strains revealed that OXA-232-encoding plasmids are conservative, while the strains were very diverse suggesting the plasmid mediated transmission of this carbapenemase genes. Importantly, a large proportion of the OXA-232-bearing KP strains also carried virulence plasmids, in particular the recent emergence of ST15 type of KP that carried both OXA-232-encoding plasmids and hypervirulent (hv) plasmids in China since 2019, highlighting the importance of the emergence of this type of KP strains in clinical setting. The early detection and investigations of OXA-232 in these strains warrants the retrospective studies to uncover the true timeline of antibiotic resistance spread, which could provide valuable insights for shaping future strategies to tackle the global health crisis.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Plasmídeos/genética , China
4.
EBioMedicine ; 101: 104998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340556

RESUMO

BACKGROUND: The epidemiological features of the Klebsiella pneumoniae causing bloodstream infections in Hong Kong and their potential threats to human health remained unknown. METHODS: K. pneumoniae strains collected from four hospitals in Hong Kong during the period of 2009-2018 were subjected to molecular typing, string test, antimicrobial susceptibility testing, whole genome sequencing and analysis. Clinical data of patients from whom these strains were isolated were analyzed retrospectively using univariate and multivariate logistic regression approaches. FINDINGS: The 240 Klebsiella spp. strains belonged to 123 different STs and 63 different capsule loci (KLs), with KL1 and KL2 being the major type. 86 out of 212 BSI-KP (40.6%) carried at least one of the virulence genes iuc, iro, rmpA or rmpA2. Virulence plasmid correlated well with the string test positive result, yet 8 strains without rmp genes were also hypermucoviscous, which was due to wzc mutation. The mortality rate of bloodstream infection patients was 43.0%. Univariant analysis showed that factors including renal replacement therapy (FDR adjusted p = 0.0007), mechanical ventilation (FDR adjusted p < 0.0001) and respiratory sepsis (FDR adjusted p < 0.0001) were found to pose the highest risk of death upon infection by Klebsiella spp. INTERPRETATION: This study revealed the high mortality rate and risk factors associated with bloodstream infections caused by K. pneumoniae in Hong Kong, which warrants immediate action to develop effective solution to tackle this problem. FUNDING: Theme Based Research Scheme (T11-104/22-R), Research Impact Fund (R5011-18 F) and Postdoctoral Fellowship (PDFS2223-1S09).


Assuntos
Infecções por Klebsiella , Sepse , Humanos , Hong Kong/epidemiologia , Klebsiella/genética , Epidemiologia Molecular , Estudos Retrospectivos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Antibacterianos
5.
Microbiol Res ; 282: 127636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38359498

RESUMO

The erm(T) gene encodes the 23 s rRNA methyltransferase and confers erythromycin resistance in Gram-positive bacteria, while has rarely been identified in Gram-negative bacteria. In this study, we identified a small IncQ1 plasmid of 6135 bp harboring the erm(T) gene in a clinical K. pneumoniae strain and confirmed the role of the erm(T) gene in mediating azithromycin resistance. This plasmid was found to be generated by incorporating the erm(T) gene from mobile elements into an IncQ1 plasmid. Our data indicated the spread of the erm(T) gene from Gram-positive bacteria to Gram-negative bacteria and the clonal spread of the ST11-KL47 type K. pneumoniae strains carrying this plasmid. Generation of this kind of multi-host plasmid will promote the dissemination of the erm(T) gene among Gram-negative bacteria and result in failures of azithromycin in treating bacterial infections.


Assuntos
Azitromicina , Klebsiella pneumoniae , Azitromicina/farmacologia , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Plasmídeos/genética , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
6.
Emerg Microbes Infect ; 13(1): 2306957, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38240375

RESUMO

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses grave threats to human health. These strains increased dramatically in clinical settings in China in the past few years but not in other parts of the world. Four isogenic K. pneumoniae strains, including classical K. pneumoniae, carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP) and CR-hvKP, were created and subjected to phenotypic characterization, competition assays, mouse sepsis model and rat colonization tests to investigate the mechanisms underlying the widespread nature of CR-hvKP in China. Acquisition of virulence plasmid led to reduced fitness and abolishment of colonization in the gastrointestinal tract, which may explain why hvKP is not clinically prevalent after its emergence for a long time. However, tigecycline treatment facilitated the colonization of hvKP and CR-hvKP and reduced the population of Lactobacillus spp. in animal gut microbiome. Feeding with Lactobacillus spp. could significantly reduce the colonization of hvKP and CR-hvKP in the animal gastrointestinal tract. Our data implied that the clinical use of tigecycline to treat carbapenem-resistant K. pneumoniae infections facilitated the high spread of CR-hvKP in clinical settings in China and demonstrated that Lactobacillus spp. was a potential candidate for anticolonization strategy against CR-hvKP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Camundongos , Humanos , Ratos , Animais , Tigeciclina/farmacologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Carbapenêmicos/farmacologia , Virulência , Modelos Animais de Doenças , Antibacterianos/farmacologia
7.
Sci Total Environ ; 916: 170058, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218490

RESUMO

The global transmission of carbapenem-resistant Acinetobacter baumannii (CRAB) poses a significant and grave threat to human health. To investigate the potential relationship between hospital sewage and the transmission of CRAB within healthcare facilities, isolates of Acinetobacter spp. obtained from untreated hospital sewage samples were subjected to antimicrobial susceptibility tests, genome sequencing, and bioinformatic and phylogenetic tree analysis, and that data were matched with those of the clinical isolates. Among the 70 Acinetobacter spp. sewage isolates tested, A. baumannii was the most prevalent and detectable in 5 hospitals, followed by A. nosocomialis and A. gerneri. Worryingly, 57.14 % (40/70) of the isolates were MDR, with 25.71 % (18/70) being resistant to carbapenem. When utilizing the Pasteur scheme, ST2 was the predominant type among these CRAB isolates, with Tn2006 (ΔISAba1-blaOXA-23-ATPase-yeeB-yeeA-ΔISAba1) and Tn2009 (ΔISAba1-blaOXA-23-ATPase-hp-parA-yeeC-hp-yeeB-ΔISAba1) being the key mobile genetic elements that encode carbapenem resistance. Seven A. gerneri isolates which harbored Tn2008 (ISAba1-blaOXA-23 -ATPase) and the blaPER-1 gene were also identified. Besides, an A. soil isolate was found to exhibit high-level of meropenem resistance (MIC ≥128 mg/L) and harbor a blaNDM-1 gene located in a core genetic structure of ISAba125-blaNDM-1-ble-trpF-dsbC-cutA. To investigate the genetic relatedness between isolates recovered from hospital sewage and those collected from ICUs, a phylogenetic tree was constructed for 242 clinical isolates and 9 sewage isolates. The results revealed the presence of two evolutionary clades, each containing isolates from both ICU and sewage water, suggesting that CRAB isolates in untreated sewage water were also the transmission clones or closely related evolutionary isolates recoverable in hospital settings. Findings in this work confirm that hospital sewage is a potential reservoir of CRAB.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Esgotos , Filogenia , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Carbapenêmicos/farmacologia , Hospitais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/uso terapêutico , Água
8.
Int J Antimicrob Agents ; 63(2): 107055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081547

RESUMO

Klebsiella pneumoniae is an important clinical bacterial pathogen that has hypervirulent and multidrug-resistant variants. Uniform Manifold Approximation and Projection (UMAP) was used to cluster genomes of 16 797 K. pneumoniae strains collected, based on core genome distance, in over 100 countries during the period 1937 to 2021. A total of 60 high-density genetic clusters of strains representing the major epidemic strains were identified among these strains. Using UMAP bedding, the relationship between genetic cluster, capsular polysaccharide (KL) types and sequence type (ST) of the strains was clearly demonstrated, with some important STs, such as ST11 and ST258, found to contain multiple clusters. Strains within the same cluster often exhibited significant diverse features, such as originating from different areas and being isolated in different years, as well as carriage of different resistance and virulence genes. These data enable the routes of evolution of the globally prevalent K. pneumoniae strains to be traced. Alarmingly, carbapenem-resistant K. pneumoniae strains accounted for 51.7% of the test strains and worldwide transmission was observed. Carbapenem-resistant and hypervirulent K. pneumoniae strains are mainly reported in China; however, these strains are increasingly reported in other parts of the world. Also identified in this study were several key genetic loci that facilitate development of a new K. pneumoniae typing method to differentiate between high- and low-risk strains. In particular, the acrR, ompK35 and hha genes were predicted to play a key role in expression of the resistance and virulence phenotypes.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Carbapenêmicos , Virulência/genética , Genômica , Antibacterianos/farmacologia , beta-Lactamases/genética
9.
Euro Surveill ; 28(37)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37707983

RESUMO

BackgroundIn China, the bla NDM gene has been recovered from human bacterial isolates since 2011. After 2014, detections of this gene in animal and food bacterial isolates have increasingly been reported.AimWe aimed to understand how bla NDM-bearing bacteria could spread between humans, animals, and animal-derived food.MethodsA total of 288 non-duplicate Escherichia coli strains, including 130 bla NDM-carrying and 158 bla NDM-negative strains were collected from clinical (humans), food-producing animals (pigs) and food (retail pork) sources between 2015 and 2017. The strains were whole genome sequenced. Core-genome-multilocus-sequence-typing was conducted. To investigate if sequence types (STs) found in human, animal or food samples could have a prior origin in a clinical, animal or food-borne animal reservoir, discriminant analysis of principal components (DAPC) was used. Plasmids bearing bla NDM were characterised.ResultsThe 130 bla NDM-carrying E. coli strains comprised a total of 60 STs, with ST167 (10/51), ST77 (6/33) and ST48 (6/46) being most prevalent in clinical, animal and food sources, respectively. Some ST10 and ST167 strains were respectively found among all three sources sampled, suggesting they might enable transfer of bla NDM between sources. DAPC analysis indicated possible transmissions of ST167 from humans to animals and ST10 from animals to human. In 114 of 130 bla NDM-carrying isolates, bla NDM was located on an IncX3 plasmid.ConclusionThis study in a Chinese context suggests that cross-species transmission of certain STs of E. coli harbouring bla NDM on mobile elements, may facilitate the spread of carbapenem-resistant Enterobacteriaceae. Stringent monitoring of bla NDM-bearing E. coli in ecosystems is important.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Ecossistema , Humanos , Animais , Suínos , Escherichia coli/genética , Genômica , China/epidemiologia
10.
Sci Total Environ ; 902: 166026, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541513

RESUMO

Understanding tetracycline resistance in Vibrio parahaemolyticus from food products is crucial for effective control measures against this foodborne pathogen. This study aimed to investigate the prevalence, evolution routes, and mechanism of transmission of tetracycline resistance in Vibrio parahaemolyticus isolates collected from food products in Shenzhen, China. A total of 2342 non-duplicate Vibrio parahaemolyticus were isolated from 3509 food samples during the period 2013-2021. Among these 2342 Vibrio parahaemolyticus strains, 530 (21.37 %) were resistant to tetracycline. These tetracycline-resistant Vibrio parahaemolyticus strains were mainly isolated from shrimp samples, with the highest resistance rate (46.9 %) observed in 2019. Phylogenetic and genomic analyses of 387 isolates carrying the tet genes revealed that five different types of tet genes (tet(34), tet(A), tet(B), tet(M), and tet(E)) were present. The tet(A) gene was the most common (65 % of isolates), while tet(E) and tet(M) genes were only detected in specific years. Although tet(A) is the most commonly detected gene, it only encodes resistance in a low percentage of strains (47/129). On the other hand, the resistance rate is highest in isolates carrying tet(B) (41/55). Interestingly, V. parahaemolyticus carrying the tet genes were not necessarily tetracycline-resistant, and vice versa. A total of six different types of plasmids and two transposable units were found to carry the tet genes. V. parahaemolyticus strains that harbored these plasmids were often resistant to multiple antibiotics, indicating that horizontal transfer of antibiotic resistance genes is common among V. parahaemolyticus strains. Our findings suggest a high prevalence of tetracycline resistance in Vibrio parahaemolyticus strains recovered from food products in Shenzhen, China. These results provide valuable insight into the evolution and transmission of tetracycline resistance in foodborne Vibrio parahaemolyticus isolates and highlight the need for effective control measures to prevent the spread of antibiotic resistance.


Assuntos
Resistência a Tetraciclina , Vibrio parahaemolyticus , Resistência a Tetraciclina/genética , Prevalência , Filogenia , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Vibrio parahaemolyticus/genética , China/epidemiologia
11.
Microbiol Spectr ; 11(4): e0103223, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395663

RESUMO

Plasmid-mediated quinolone resistance (PMQR) determinants, such as qnrVC genes, have been widely reported in Vibrio spp. while other types of PMQR genes were rarely reported in these bacteria. This study characterized the phenotypic and genotypic features of foodborne Vibrio spp. carrying qnrS, a key PMQR gene in Enterobacteriaceae. Among a total of 1,811 foodborne Vibrio isolates tested, 34 (1.88%) were found to harbor the qnrS gene. The allele qnrS2 was the most prevalent, but coexistence with other qnr alleles was common. Missense mutations in the quinolone resistance-determining region (QRDR) of the gyrA and parC genes were only found in 11 of the 34 qnrS-bearing isolates. Antimicrobial susceptibility tests showed that all 34 qnrS-bearing isolates were resistant to ampicillin and that a high percentage also exhibited resistance to cefotaxime, ceftriaxone, and trimethoprim-sulfamethoxazole. Genetic analysis showed that these phenotypes were attributed to a diverse range of resistance elements that the qnrS-bearing isolates harbored. The qnrS2 gene could be found in both the chromosome and plasmids; the plasmid-borne qnrS2 genes could be found on both conjugative and nonconjugative plasmids. pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of phenotypic resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would speed up the emergence of multidrug-resistant (MDR) pathogens that are resistant to the most important antibiotics used in treatment of Vibrio infections, suggesting that close monitoring of emergence and dissemination of MDR Vibrio spp. in both food samples and clinical settings is necessary. IMPORTANCE Vibrio spp. used to be very susceptible to antibiotics. However, resistance to clinically important antibiotics, such as cephalosporins and fluoroquinolones, among clinically isolated Vibrio strains is increasingly common. In this study, we found that plasmid-mediated quinolone resistance (PMQR) genes, such as qnrS, that have not been previously reported in Vibrio spp. can now be detected in food isolates. The qnrS2 gene alone could mediate expression of ciprofloxacin resistance in Vibrio spp.; importantly, this gene could be found in both the chromosome and plasmids. The plasmids that harbor the qnrS2 gene could be both conjugative and nonconjugative, among which the pAQU-type qnrS2-bearing conjugative plasmids were able to mediate expression of resistance to both ciprofloxacin and cephalosporins. Transmission of this plasmid among Vibrio spp. would accelerate the emergence of multidrug-resistant pathogens.


Assuntos
Quinolonas , Vibrio , Ciprofloxacina/farmacologia , Cefalosporinas , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Plasmídeos/genética , Monobactamas , Vibrio/genética , Testes de Sensibilidade Microbiana
13.
Microbiol Spectr ; 11(3): e0426122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078855

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a bacterial pathogen that may cause serious drug-resistant infections that are potentially fatal. To investigate the genetic characteristics of these organisms, we tested 416 P. aeruginosa strains recovered from 12 types of clinical samples collected in 29 different hospital wards in 10 hospitals in Guangdong Province, China, from 2017 to 2020. These strains were found to belong to 149 known sequence types (STs) and 72 novel STs, indicating that transmission of these strains involved multiple routes. A high rate of resistance to imipenem (89.4%) and meropenem (79.4%) and a high prevalence of pathogenic serotypes (76.4%) were observed among these strains. Six STs of global high-risk clones (HiRiCs) and a novel HiRiC strains, ST1971, which exhibited extensive drug resistance, were identified. Importantly, ST1971 HiRiC, which was unique in China, also exhibited high virulence, which alarmed the further surveillance on this highly virulent and highly resistant clone. Inactivation of the oprD gene and overexpression of efflux systems were found to be mainly responsible for carbapenem resistance in these strains; carriage of metallo-ß-lactamase (MBL)-encoding genes was less common. Interestingly, frameshift mutations (49.0%) and introduction of a stop codon (22.4%) into the oprD genes were the major mechanisms of imipenem resistance. On the other hand, expression of the MexAB-OprM efflux pump and MBL-encoding genes were mechanisms of resistance in >70% of meropenem-resistant strains. The findings presented here provide insights into the development of effective strategies for control of worldwide dissemination of CRPA. IMPORTANCE Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a major concern in clinical settings worldwide, yet few genetic and epidemiological studies on CRPA strains have been performed in China. Here, we sequence and analyze the genomes of 416 P. aeruginosa strains from hospitals in China to elucidate the genetic, phenotypic, and transmission characteristics of CRPA strains and to identify the molecular signatures responsible for the observed increase in the prevalence of CRPA infections in China. These findings may provide new insight into the development of effective strategies for worldwide control of CRPA and minimize the occurrence of untreatable infections in clinical settings.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Meropeném/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Pseudomonas aeruginosa , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Imipenem/farmacologia , Imipenem/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
14.
Microbiol Spectr ; 11(3): e0308122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092989

RESUMO

Expression of the hypermucoviscosity (HMV) phenotype and capsular polysaccharide (CPS) biosynthesis in Klebsiella pneumoniae were reported to be encoded by genes located in the chromosomal rmp locus. However, the functions of the rmp locus in the virulence plasmid remained unclear, and most of the rmp loci in clinical K. pneumoniae are plasmid carried. In this study, we investigated the functional characteristics of plasmid-borne rmp homologues in clinical hypervirulent K. pneumoniae (hvKP) strains by cloning and introducing such gene homologues into K. pneumoniae strains of different capsule types, followed by the evaluation of phenotypic changes in these strains. Acquisition of the plasmid-borne prmpADC and prmpA2D2 loci were found to result in an increase in mucoviscosity and CPS production in K1 and K2 K. pneumoniae, while only the prmpA2D2 locus contributed to phenotypic changes in the ST11/KL64 strain. Consistently, both rmpD and rmpD2 increased HMV in K1 and K2 K. pneumoniae, while only rmpD2 contributed to HMV in the ST11/KL64 strain; rmpC contributed to CPS overproduction in K1 and K2 strains but not in the ST11/KL64 strain. Furthermore, we proposed a logistic molecular basis of the HMV phenotype of K. pneumoniae on which prmpD2-mediated HMV is attributed to the increase of cell-free CPS production. Our data confirm that the rmp homologues carried by the virulence plasmid play a key role in virulence expression in K. pneumoniae, but the phenotype is highly dependent on the genetic background of the host strain and explained why most of the clinical ST11 strains carry only the prmpA2D2 locus. IMPORTANCE Klebsiella pneumoniae has become the most frequently isolated bacterial pathogen in hospital settings, with a very high mortality rate worldwide. Factors contributing to the virulence of K. pneumoniae are the overproduction of capsular polysaccharide (CPS) as well as the hypermucoviscosity (HMV) phenotype. These two phenotypes were reported to be regulated by rmpA/A2 homologues, which are often carried by virulence plasmids. Here, we determined the functional role of two plasmid-borne rmpA in mediating expression of the HMV phenotype and CPS production in K. pneumoniae. Different capsule types exhibited differences in the expression of HMV and CPS production although they harbored an identical plasmid-borne rmpA or rmpA2 locus, indicating that these virulence-related phenotypes are strongly related to the genetic background of the host strains. Our study provides a novel understanding of the regulation of virulence-related phenotypes and clinical management of K. pneumoniae infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Infecções por Klebsiella/microbiologia , Antibacterianos/metabolismo
15.
Microbiol Spectr ; : e0282022, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943060

RESUMO

Bacterial antimicrobial resistance, especially phenotypic resistance to multiple drugs (MDR), has posed a serious threat to public health worldwide. To clarify the mechanism of transmission of multidrug resistance encoding plasmids in Enterobacterales, all seven plasmids of an Escherichia coli (E. coli) strain 1108 obtained from a chicken meat sample were extracted and sequenced by Illumina Nextseq 500 and MinION platforms. Plasmids in strain 1108 possessed 16 known antimicrobial resistance genes, with p1108-NDM (~97K) being the most variable plasmid. The multidrug resistance region of p1108-NDM was punctuated by eight IS26 insertion sequences; thus, four MDR regions were found in the backbone of this plasmid. The plasmid p1108-MCR (~65K) was found to lack the ISApl1 element and harbor the blaCTX-M-64-ISEcp1 transposition unit. Moreover, the ISEcp1-blaCMY-2 transposition unit was found in plasmid p1108-CMY2 (~98K), whereas plasmid p1108-emrB (~102K) was associated with resistance to erythromycin (emrB) and streptomycin (aadA22). p1108-IncY (96K) was a phage P1-like plasmid, while p1108-IncFIB (~194K) was found to harbor a virulence region similar to ColV plasmids, and they were found to encode a conserved conjugative transfer protein but harbor no resistance genes. Finally, no mobile element and resistant genes were found in p1108-ColV (~2K). Carriage of mcr-1-encoding elements in carbapenemase-producing Escherichia coli will potentially render all antimicrobial treatment regimens ineffective. Enhanced surveillance and effective intervention strategies are urgently needed to control the transmission of such multidrug resistance plasmids. IMPORTANCE Antimicrobial resistance (AMR) has been increasingly prevalent in agricultural and clinical fields. Understanding the genetic environment involved in AMR genes is important for preventing transmission and developing mitigation strategies. In this study, we investigated the genetic features of an E. coli strain (1108) isolated from food product and harboring 16 AMR genes, including blaNDM-1 and mcr-1 genes encoding resistance to last line antibiotics, meropenem, and colistin. Moreover, this strain also carried virulence genes such as iroBCDEN, iucABCD, and iutA. Our findings confirmed that multiple conjugative plasmids that were formed through active recombination and translocation events were associated with transmission of AMR determinants. Our data warrant the continuous monitoring of emergence and further transmission of these important MDR pathogens.

16.
Microbiol Res ; 267: 127261, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36434989

RESUMO

Phenotypic resistance to fluoroquinolones due to mutational changes in the gyrA and parC genes is common among clinical Vibrio strains; the plasmid-mediated quinolone resistance (PMQR) qnrVC genes were also suggested to play a role in enhancing resistance development. This study investigated the prevalence of qnrVC genes in foodborne Vibrio strains collected in Shenzhen, China, during the period August 2015 and April 2017. A total of 1811 foodborne Vibrio strains were collected, mostly (73.8%) from shrimp samples and 20.2% of these strains were resistant to ciprofloxacin. Investigation of resistance mechanisms showed that mutations in the gyrA and parC genes were commonly associated with ciprofloxacin resistance. The presence of qnrVC genes was shown to enhance ciprofloxacin MIC in Vibrio strains and 69.7% of Vibrio strains that harbored target mutations also carried qnrVC genes, yet only 27.5% of the isolates not harboring such mutations carried the qnrVC genes. A total of 141 strains were found to carry the qnrVC alleles, with qnrVC5 and qnrVC1 being the most common types. Fourteen qnrVC variant genes that contained novel mutations were detectable, with 12 (85.7%) involving qnrVC5-like alleles. For the first time, we found a variant that was likely formed by the recombination of qnrVC1 and qnrVC5. The genetic context of the qnrVC genes found in this study was highly variable, with most being accompanied by mobile genetic elements and other resistance genes. The increasing prevalence of qnrVC genes in Vibrio and its contribution on mediating the development of ciprofloxacin resistance need to be further investigated.


Assuntos
Farmacorresistência Bacteriana , Vibrio , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Prevalência , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Vibrio/genética , DNA Girase/genética , Mutação
17.
Int J Antimicrob Agents ; 60(5-6): 106683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36279974

RESUMO

INTRODUCTION: Azithromycin resistance in bacterial pathogens has increased worldwide, and Klebsiella pneumoniae (K. pneumoniae) carries a variety of azithromycin resistance encoding genes. METHODS: Genomic DNA of K. pneumoniae strain 16HN-12 was subjected to whole-plasmid sequencing using both the 150-bp paired-end Illumina NextSeq 500 platform and the long-read Oxford Nanopore Technologies MinION platform. Transferability of the azithromycin-resistance plasmid and the virulence plasmid was assessed by performing the conjugation assay. RESULTS: This study identified an IncB/O/K/Z conjugative plasmid that harboured erm(B) and mph(A) genes from a clinical K. pneumoniae strain. The plasmid was readily able to conjugate to Escherichia coli (E. coli) strain J53 and Salmonella enterica subsp. enterica serovar Typhimurium strain PY1 and promoted phenotypic resistance to azithromycin. Furthermore, the virulence plasmid harboured by this K. pneumoniae strain could be conjugated to E. coli strain EC600 and K. pneumoniae strain WZ1-2 via the help of this resistance plasmid through formation of a fusion plasmid. The fusion process was generated by homologous recombination through a homologous region located in both the virulence plasmid and resistance plasmid. CONCLUSIONS: Generation of this kind of conjugative plasmid simultaneously carrying virulence and resistance determinants could accelerate dissemination of these determinants and generate bacterial pathogens encoding these phenotypes. These data provide more information about transmission of azithromycin resistance and virulence determinants and call for action to further investigate and prevent such an evolutionary trend.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Infecções por Klebsiella/microbiologia , Escherichia coli/genética , Azitromicina/farmacologia , beta-Lactamases/genética , Plasmídeos/genética , Antibacterianos/farmacologia
18.
Microbiol Res ; 265: 127211, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191468

RESUMO

Colistin resistance mediated by mcr-1-bearing plasmids poses a new challenge to treatment of Salmonella infections. To probe the scale of the problem that colistin resistance mediated by mcr-1 plasmids among Salmonella, the prevalence of mcr-1 in foodborne Salmonella recovered from 2014 to 2017 in Shenzhen, China and genetic profile of mcr-1 positive isolates were investigated. All mcr-1 positives Salmonella strains were collected from food products, characterized by PCR and MALDI-TOF, and subjected to antimicrobial susceptibility testing, whole-genome sequencing, bioinformatics analysis, and conjugation. Twenty-eight mcr-1-positive Salmonella strains were recovered from pork. The rate of recovery displayed an increasing trend and was often accompanied by multidrug resistance. Salmonella Typhimurium was the most prevalent serotypes. Comparative genomic analysis indicated that the mcr-1 gene was located on the transferable IncX4 plasmids, as well as the IncHI2 plasmids, in which the gene was associated with ISApl1. All two types of plasmids were often detected in zoonotic pathogen. Transferable 251K mcr-1-bearing IncHI2 type plasmids were frequently reported in human and food-producing animals, but this is first time to detect a certain number in food. These findings show that dissemination of these two types of plasmids is responsible for the increase in the prevalence of colistin resistance in Salmonella strains in recent years, leading to rapid emergence of MDR Salmonella upon acquisition of these two mcr-1-bearing plasmids. Transmission of IncX4 and IncHI2 plasmids in Salmonella would cause huge public health concerns in controlling foodborne infections caused by Salmonella.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , China/epidemiologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella typhimurium/genética
19.
J Antimicrob Chemother ; 77(11): 3039-3049, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35978475

RESUMO

BACKGROUND: Carbapenemase-producing Vibrio spp., which exhibit an XDR phenotype, have become increasingly prevalent and pose a severe threat to public health. OBJECTIVES: To investigate the genetic characteristics of NDM-1-producing Vibrio spp. isolates and the dissemination mechanisms of blaNDM-1 in Vibrio. METHODS: A total of 1363 non-duplicate Vibrio spp. isolates collected from shrimp samples in China were subjected to antimicrobial susceptibility tests and screened for blaNDM-1. The blaNDM-1-positive isolates were further characterized by PFGE, MLST, conjugation and WGS using Illumina and Nanopore platforms. Plasmid stability and fitness cost were assessed using Escherichia coli J53, Klebsiella pneumoniae Kpt80 and Salmonella spp. SA2051 as recipient strains. RESULTS: In total, 13 blaNDM-1-positive isolates were identified, all exhibiting MDR. WGS analysis revealed that the 13 blaNDM-1 genes were all associated with a derivative of Tn125. Plasmid analysis revealed that six blaNDM-1 genes were located in IncC plasmids and the other seven were carried by plasmids of two different novel types. Conjugation and plasmid stability assays showed that only the IncC plasmids could be transferred to all the recipient strains and could be stably maintained in the hosts. CONCLUSIONS: The emergence of the novel plasmids has contributed to the variable genetic contexts of blaNDM-1 in Vibrio spp. and IncC plasmids harbouring the blaNDM-1 gene could facilitate the spread of such genes between Vibrio spp. and other zoonotic pathogens, leading to a rapid dissemination of blaNDM-1 in bacterial pathogens worldwide.


Assuntos
Antibacterianos , Vibrio , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Plasmídeos , Escherichia coli/genética , Vibrio/genética , Genômica , China/epidemiologia
20.
Front Microbiol ; 13: 914884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935210

RESUMO

The main mechanism of virulence in Klebsiella pneumoniae is the acquisition of K. pneumoniae virulence plasmids (KpVPs), which include two dominant types, namely, KpVP-1 (carrying iuc1, iro1, rmpA, and rmpA2) and KpVP-2 (carrying iuc2, iro2, and rmpA). Both are non-conjugative and associated with different hypervirulent clones. In contrast to KpVP-1 reported in K1, K2, and other serotypes of K. pneumoniae, KpVP-2 was only reported in K2 strains and rarely characterized. In this study, we identified a conjugative KpVP-2-type virulence plasmid from a clinical hypervirulent K. pneumoniae strain. This plasmid was generated by the integration of conjugative transfer genes into the KpVP-2-type plasmid Kp52.145 II and could be readily conjugated to Escherichia coli strain EC600 and K. pneumoniae strains of various types which are clinically existing, mediating hypervirulence. Furthermore, this kind of conjugative KpVP-2-type virulence plasmid has been disseminated in clinical settings in Hong Kong and other regions of the world. The generation of conjugative virulence plasmid may promote its transmission and explain the evolution of this type of virulence plasmid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...